If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+9x-34=0
a = 4; b = 9; c = -34;
Δ = b2-4ac
Δ = 92-4·4·(-34)
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{625}=25$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-25}{2*4}=\frac{-34}{8} =-4+1/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+25}{2*4}=\frac{16}{8} =2 $
| -12=4(w+4)-8w | | 40+.04x=30+.09x | | v-4.72=1.5 | | 28-11x=12+5x | | 7x+156=4x+184 | | -4/5u=12 | | 2-11x=12+5x | | 2x+14=-2x+14 | | 7x+12-4=6x+12 | | x=(250+x)0.3 | | 90=3x+112 | | 90=5x+100 | | 6x-2=-2x(3+10) | | -22=2(x-8)-8x | | 7x+4-12=6x+12 | | 1.4(8x-20)+4x=31 | | 5x/3=22 | | -(16x^2-35x+19)=0 | | -29-(-43)=x/4 | | 7n-3=7 | | 7-w=11 | | 5u+3÷4u=54-u | | -(7y+6.0)=3.6-y | | 8x-20=-2x=80 | | 3(y+3)-6y=18 | | 8x-5=3=x | | -8=-2y. | | -2x-6+7x=3(x-4) | | -8y=-2y-18 | | 18x+10=14x | | 6x+2x+3x+4x=360 | | 38+3y-9=15y-13-5y |